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Some of the arising problems and their solution in the design and analysis process of composite bridges will be described in this paper. The 
basic theory needed for the proper numerical modelling of long-term effects combined with the specific structural behaviour of the bridges will 
be outlined. A consistent solution is proposed for both linear elastic theory and non-linear theory.

The presented solution has been implemented in a commercially available computer program. This implementation into the bridge design 
software is briefly described. The system takes into account all types of quasi-permanent loading and the time, when it is applied on the struc-
ture. The structural calculation includes the computation of the effects due to creep and shrinkage in the time intervals between activating new 
structural components and applying major new loadings. With such tools, the structural engineer is able to predict and follow the structural and 
material behaviour through all steps of bridge construction. A geometrical pre-processor and a powerful graphical post-processor facilitate the 
comparison of the behaviour and costs of different variants within short time.

Various composite bridges have already been successfully designed and analysed by applying the presented solution. The bridges presented 
in this paper as typical examples are suited to give insight into the problems specifically related to composite behaviour that were encountered 
and solved in the design process using the presented solution.

CREEP AND SHRINKAGE
In composite structures with concrete members, creep and shrinkage of concrete causes additional, time-dependent strain and stress within 

the steel members. The accurate design of steel composite structures requires numerical modelling of time dependent effects within design and 
analysis procedure.

The occurrence of time dependant plastic strain is a material property of concrete. It consists of two components, creep and shrinkage. Creep 
is a stress dependent material nonlinearity in which the material continues to deform under a constant load. Shrinkage does not depend on the 
load, and even an unloaded element will shrink.

The creep strain is generally expressed as a linear function of the 
elastic strain fe, i.e. fcr = fe * {. Both, creep factor { and shrinkage 
strain fs depend on a set of global properties denoted c:

global parameters (such as characteristics of the cement, quality • 
of concrete, environmental data, average temperature, average 
humidity, material properties, etc.),
cross-sectional section properties, average depth etc.,• 
age of concrete• 

The creep factor depends on load application time, shrinkage is 
not dependent on load application time.

The total plastic strain is the sum of the creep strain and shrinkage 
strain as shown in Eq. (1):
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fpl plastic strain due to creep and shrinkage
fe elastic strain due to permanent load
fs  shrinkage strain depending on time t 

and global properties c
{  creep factor, depending on time t, 

load application time x and global properties c

The rules to determine the creep factor and shrinkage strain are very 
complex. Nowadays the CEB-FIP model is widely used. Many new de-
sign codes (EUROCODE, DIN, etc.) are based on these rules, with only 
minor differences to the original. Details are given in the CEB-FIP docu-
ment [1].

The method used in this work is based on a time stepping scheme. 
The solution to the basic differential equation of the problem can 
now be written for the investigated creep interval [tn, tn+1] as fol-
lows:

Consistent Analysis Method For Long Term Effects In Composite Bridges
Composite structures are widely used in bridge engineering, mostly combining steel girders with a cast in place concrete slab. Long-term 
effects due to creep and shrinkage of the concrete together with the specific structural behaviour make it imperative that appropriate tech-
niques be used in the design and analysis process for considering these effects in accordance with sufficiently accurate theories.

tt0 (assemble time) 
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shrinkage is independent 
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Fig. 2 – Shrinkage – development of the shrinkage strain over the time

Fig. 1 – Creep – development of the creep strain over the time under 
the constant stress
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where:
ftn is known total strain at begin of investigated creep period [tn, tn+1]

vc concrete stress at actual time
{ known creep factor for load application time x and global properties c
fs is known shrinkage function independent from load application time
ftn+1 is unknown strain at the end of investigated creep period [tn, tn+1]

ftn is known total stress at begin of investigated creep period [tn, tn+1]

v is unknown stress in investigated creep period [tn, tn+1]

vtn+1  is unknown total stress at end of investigated creep period [tn, tn+1]

In Eq. (2) the first term of the right side represents the total strain at the begin of the time interval, the second term the additional creep 
strain in the time interval due to the stress increments prior to tn, the third term the shrinkage strain in the time interval and the last term the 
creep strain induced by the stress change during the creep interval. The last term has well known creep recursion definition: change of stress 
depends on change of strain and vice versa.

Assuming that time step [tn, tn+1] is small enough we can rewrite Eq. (2) in algebraic form as follows in Eq. (3) and Eq. (4):
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In Eq. (4) the problem is transformed into incremental form:

1.  The first term is transformed from integral form into the finite 
sum of stress increments l = 1,..., n at times xi prior to inves-
tigating creep period weighted with creep factors.

2.  Second term is simply additional shrinkage strain.
3.  The last term introduces weighting factors w1 and w2 into sim-

ple time step algorithm defining the influence of the elastic 
strain at beginning and end of the time step on the average 
value.

In Eq. (5) the meaning of weighting factors w1 and w2 is clari-
fied.
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Total stress increment at the end of creep interval is put “back” in 
time to cover “creep of creep” effect. This novel approach allows for 
consistent storage of creep results as “normal loading case” result. 
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Fig. 3 – Stress, creep factor and strain development in the time interval 
tn to tn+1
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EXPLICIT AND IMPLICIT CREEP ANALYSIS
The value of weighting factors w1 and w2 controls the quality of solution. For w1 = 0, the solution degenerates to the explicit time integra-

tion (forward Euler method). The strain rate at begin of the time interval is assumed constant in the whole interval Dt. Very small time steps are 
required to minimize the error. Explicit approach is therefore not recommended for creep analysis.

The method becomes implicit for all weighting factors with w1 > 0, and w1 = 1 refers to backward Euler integration method. Other propos-
als for implicit time integration schemes are in literature [2], e.g. the central difference scheme (w1 = w2 = 0.5) or the Galerkin scheme 
(w1 = 2/3 and w2 = 1/3). Schemes with w1 $ 0.5 are numerically unconditionally stable, i.e. they do not require very small time-steps. 
Implicit creep is generally more accurate, but accuracy is still dependent on the time-step length. A reasonable time-step must be used to cap-
ture the nonlinear creep behaviour accurately.

IMPLEMENTATION WITH ADJUSTED STIFFNESS
Eq. (4) can be solved for the unknown stress increment as follows:
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Comparing Eq. (7) to engineering stress-strain definition we see that we can use exactly the same finite element formulation. The only dif-

ference is that for the creep loading case the elasticity modulus has to be replaced with Eadj [3] as shown in Eq. (8) “Age adjusted effective 
modulus”:

Φ+
≡

1

E
E adj   (8)

   
The disadvantage of the implementation with adjusted stiffness is that creep effects cannot be mixed with other loadings and with non-

linearity. Therefore the iterative method outlined in chapter 5 recommended and has been chosen for the implementation in the software 
package [4].

IMPLEMENTATION WITHIN NEWTON-RAPSHON
In the iterative Newton-Raphson method, creep due to stress increments arising during the time step is assumed as additional non-linearity. 

Iteration steps are applied until the convergence is achieved.
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In Eq. (9) unknown plastic strain due to the stress increments arising during the time step is not known. The straightforward solution is to 

estimate it by using the values from last iteration k-1:
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The solution of Eq. (10) requires additional storage of previous iteration state. This can be avoided if we apply additional plastic strain in 

equilibrium calculation as shown in Eq. (11).
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COMPOSITE EFFECTS – PRIMARY AND SECONDARY STRESSES
In composite structures – typically steel girders with concrete slabs 

– two types of material are combined within the deck section. Con-
crete layers with different ages act as different materials as they 
creep differently. The solution of the creep and shrinkage problem 
becomes more complicated because primary effects arise in addition 
as shown in Fig 4 and Fig 5.

Creep material – in this case concrete – tends to change the volume 
during the creep period. Creep of concrete is constrained by the steel 
and therefore additional stresses will be introduced at cross section 
level even for globally static determinate systems. In first step the pri-
mary stresses are calculated at the cross section level [5].

The total stress in the composite section can be seen as the sum 
of primary and secondary stresses [6], [7], where the primary part 
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Fig. 4 – Each homogeneous part of the section has to be treated 
separately



SILNICE ŽELEZNICE 4/201028

PROJEKTOVÁNÍ/DESIGNING 

represents the stresses due to the non-linear strain distribution in the cross-section plane, which are in equilibrium within the cross-section 
as shown in Fig 5.

Applying the equilibrium condition on cross-section level leads to the actual strain plane resulting from constraints between different materi-
als or different creep and shrinkage behaviour. Integrating these strains over the girder length results in a theoretical bending curve arising if 
the girder were statically determinate. Fitting the structure into external constraints (supports, constraints from other structural parts such as 
cross girders) yields additional strains and stresses in the composite girder.
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Eq. (12) shows the equilibrium conditions for the primary stresses. The three components refer to longitudinal strains and gradients in y and 
z direction. Creep due to shear is not considered (reasons see [8]). Stiffness properties in the local system are required for all homogeneous parts 
of the cross-section (A, Iy, Iz, b, ey, ez). Eq. (13) shows the principles of the primary state calculation:

( )

[ ]iii

n

i
iii

adj
i

T
i

T
i

KF

STKTS

εε

εε

−⋅=

=−⋅⋅⋅⋅⋅
=

0
1  

 (13)

   
where:
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The resultant “strain plane” f is then applied on the overall structure like a temperature load. For statically non-determinate structures, the 
response of the structure to this application of the “strain plane” results in the “Secondary effects” covered in global finite element analysis of 
the structure.
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Fig. 5 – Stress, creep factor and strain development in the time interval tn to tn+1
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STRESS TIME HISTORY
As the creep directly depends on the load application time and the corresponding static system, it is necessary to store all stress increments 

during the life of the structure – from time zero up to time infinity. This data are basis for the time dependent solution. Difficulties arise with 
storing stresses directly produced by the time effects; they represent continuous change in time instead of stress increment.

CONCLUSION
In this work a novel numerical implementation of creep problem in composite bridges is outlined. The presented solution allows for anal-

ysis of time dependent effects combined with other bridge loading and/or non-linear analysis problems, like second order effect, large dis-
placement or cable sagging. The calculation of creep and shrinkage factors is fully automatic based on any modern design code. The engi-
neer has to specify only general material properties and to define global environmental parameters. The solution converges to the exact so-
lution, as time steps are refined.
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Metoda konzistentní analýzy pro dlouhodobé účinky v kompozitních mostech
Tento příspěvek popisuje novou numerickou implementaci problému tečení v kompozitních mostech. Prezentované řešení umožňuje analýzu
od času závislých účinků v kombinaci s jiným zatížením mostu a/nebo problémy nelineární analýzy, jakými jsou druhořadý efekt, velké
přemístění nebo převis kabelů. Kalkulace faktoru tečení a smrštění je plně automatická na základě kódu moderního designu. Inženýr musí 
specifikovat jenom všeobecné vlastnosti materiálu a definovat globální parametry životního prostředí. Řešení směruje k přesnému řešení, když 
jsou zpřesněny časové kroky.
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Fig. 6 – Creep functions are different for different loading stress increments {l(t), l = 1,4
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